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DElECBION OF NONLINEAR  TRANSFER  FUNCTIONS 
BY THE USE OF GAUSSIAN STATISTICS 
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I ' .  SUMMARY 
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- FaUure detection will be an essential part of electronic  system8 in future. apace 
programs. It would be highly desirable to be able to detect incipieut failures wiifle 
equlpmeat ta oh-line.  The possibility of using the statistics of on-line signals as an 
Lndlcator of incipient failures is discussed in thls report. As a p M  of this discussion, . 
the concepts of random variables, functions af random variables. and stochastic proc- . 
esse8 are defined in a limited  sense. A nonlinearity test that uses ratios of the mo- 
ments of a Gaussian random variable is developed and presented. The results of this 
investigation are encouraging,  and the results indicate that further work should be 
pursued. The  next logical step wwld be to apply nonsupervised learning theory to 
determine the statistics of nonstationary input signals and to use the results to detect 
nonlinearities in the output signals of electronic  systems. 
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In the manned epacecraft programi great concern exists abart operational reli- abfliw, no effort is spared to  ensure that, even if the mission cannot be  completed 
satisfactorily, the flight crew is returned  to earth safely. One of the foundations of ' 

the operational-reliability phtlosophy is redundancy. Many kinds of redundancy are 
used (e. g., redundant testing, redundant inspection, redundant  functions,  and  redun- 
dant equipment). All these techniques are used to ensure that only reliable equipment 
is installed in a spacecraft and that, if any item fails, another  piece ol equipment or 
mode of operation is available to replace it. 

In the past, the  greatest  emphasis has been placed on exhaustive testing before 
launch. Usually, the equipment experienced more hours of testing than were  experi- 
enced in flight. Degraded operation was permitted in the backup modes, but a signifi- 
cant failure caused immediate mission termination. Because of the  nature of future 
manned spacecraft programs, emphasis will be shifted more toward mission-success ,--- 

techniques. For space-station operations, permanence will be emphasized, and space, 
shuttle vehicles with 100-mission lifetimes WLU spend more time in space than on the 
ground. Emphasis will be on techniques that minimize graund testing and that avoid 
mission termination because of equipment w c t i o n .  Degraded  backup modes of 
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probability that X OF Y Oakes on a value less than OF equl  to 
x or y, .wspectively 

function of x 

function of t 

first derivative of b with respect to t-. 
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An experiment may be considered in which a marble is selected  from a jar con- 
taining marbles af different colors. If a number is assigned to each colors then the 
eapertment le as follows. 

1. A marble is selected. 

2. The color of the marble is determined. 
'. I 

* 3, 'me m a e r  that corresponds to that color 1s logged. ' , ' . .  

Thus, an experiment is performed, an outcome is observed, and a number is assigned 
to the outcome. This statement is the definition of a random variable (ref. 1). A ran- 
dom variable is a function from a set of outcomes ,@ an experiment to the set of real 
numbers. . . . .  . 

A different experiment might be the selection of a number from  the set of all real 
numbers. In this case, the functional  value of the random variable could be the outcome 
of the experiment itself. This is the type of random variable considered in this report., 

z 

FUNCTIONS OF'RANDOM VARIABLES 

Once a random variable has been defined, the &e & the 'random variable (the ' 

set of real uumbere associated wiq the  experiment outcomes) can be manipulated by 
any one ai a multitude of functions. :'The range may be increment& by a constant, mul-' 
tiplied by a coastant, subjected to a polynomial transformation, or whatever the imagi- 
nation can deviee. Linear transformatfons, polynomial transformations, and the 
densities and moments of random variable8 will be diacus8ed in this report. 
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Let x be the value of the random variable X. Then, a linear hmformation of 
x as 

A polynomial transformation of X is 

The density of a random variable i s  a function that describes the relative fre- 
quency of occurrence of the x-values tn the range of the random variable. Many types 
of densities exist. The uniform density, for example, states that the relative frequency 
of occurrence of the x-values is constant over a range. This report is concerned with 
the Gaussiah or  normal density, which is described by the function 

1 -x2/2u2 
# F = = "  

I 

v + :  , I L 4  I -  
. .  

where u is a spr 
of the Gauesian densi 
in figure 1. 

As indicated in f i  
tend to cluster around 
a decreasing frequency of occurre 
function of distance  from this point. 

The probability that X takes on a 
value less than or equal to 5 is called . : . ,  .. . .  1 , 

the distribution function and i s  expressed 1 

.. ' qgure s'. -*,Gaus;rSaa deneiiy functioa : .:' 
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The actual probability that the outqome. of the experiment will be  between x1 and 
x2 (or equal to either) is found by 

This integral cannot be evaluated by normal means; therefore,  numerical techniques 
must be employed.  However, the normal density has been evaluated thoroughly, and 
tables of values are  available in almost any text dealing with statistics (ref. 2). 

Moments indicate where the functional values of a random variable are located 
and how the values are spread in the set of real numbers. The  equation for the ith 

. moment of the random variable X is 

Central moments are formed by subtracting y from each value of x in equation (6); 
u t  is, . '. 

centered in the set of real numbers, The  eecond central moment, called the variance, 

tional values of X are. Higher order moments also indicate dispersion of the 
. is usually designated by the symbol cr2 and indicates how widely dispersed the func- 

x values. 

LINEAR TRANSFORMATION OF GAUSSIAN RANDOM VARIABLES 
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where X is a Gaussian random variable. If a is gosibtve, .then 

or 

I 



Two important points bacome evident as a rewt'of the preceding discussion. First, 
the linear tmndormation of a Gaussian random v a W l u  results in a Gaussian random 
variable and, second, the variance of the sesulang random variable  can be expressed 
as the variance of the previous random variable  multiplied by the square of the trans- 
formation constant. 

MOMENTS OFA GAUSSIAN RANDOM VARIABLE 
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then 

By applying tsibniz's rule to equation (la), equation (22) is obtained. 
/. 

If equatlon (18) is Werenttated n ttmes with respect to x, 
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STOCHASTIC PROCESSES 

A precise definition uf abchstic processes ba8 mallp r;unfnc;ltiorrs. For the 
purposes of this report, a stochastic pracess will be considered to be a coOLiarous rep- 
etition of the experiment Ctiscussed in the section eatitled "Random Variables"; that is, 
at all instants of time, the experiment is being performed, and an outcome i~ avaflable. 
Thus, at any instant of time, a random variable exists, and a range oahre can be ob- 
tained as a function of the &stribation of that random uwiable. An example of a sto- 
chastic prccess could be the voltage across the terminals of a battery. If the battery 3 
charged, the voltage has little variation; therefore, the stochastic process is ad very 
icteresting. A more interesting stochastic process is the voltage across the terminals 
of an antenna. This voltage is the s a ~ n  af various kinds of mise and the different kinds 
of communications si* currently in use. The coatrast between these two kinds of 
stcchastic prucesses iUustrates an inportant property of some stochastic prwesses - 
stationarity. The battery voliage does ad change; it remains stationary. The antema 
voltage moves about drastically. A c W y ,  the process need not sit still to be station- 
ary. A process is strict-sense statjonary if its statistics are not affected by a shift la 
the time origin. It is wide-sense stitioraarp if its mean is constant and its autocormk- 
tim is a function d the time separatan dy. Because a Caussfan process is -uniquely 
determined by its first two moments, a wide-sense stationary Gaxssian process is also 
strict-sense staiiorr;uy and bas a coastant mean and variance. lMs regort is primarily 
concerned with Gaussian processes. 

GAUSSIAN PROCESS SAMPLING 
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5. Repetition af steps 1 to 4 a predetermined number of times 

6. Plotting of a histogram of the  values obtained from step 4 
< 

Results ObtaLned by using this computer 
program are shown in figure 2. In one 
case, only 50 numbers were used in the 
set of &om numbers; ia another  case, 
200 numbers were used; and, in a third 
case, 500 numbers were used. In each 
w e ,  1000 values were used in the bisto- 2 o 
gram. As always in sampled statistics, 
the ideal ratio of zero was not achieved. c i i  t 
However, with sample sizes as large as jiii ' P 
500, the law of large numbers (ref. 3) ,Ji! . 
applies, and the values are b l y  elus-.--#,; 

tered muad zero with a relatively small'? 
variance. Tbese data formed the basis :h! 

for a determination of the level af detect- . Figure 2. - Sampld staadard normal 
able distortion (discussed subsequently), moments for the ratio 
because they represent the ratios af mo- .. 3 
m a t s  to be expected in ~JI  mdistorted 'gmaa - m4)/3m2 . 
Gaussian process. 
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~rr reference I ,  tafonnation pmv&~ Prom dia ttre statistics af equation (SI) 
caabecal- 1 ?:. 
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and 

Then 

(34) 

or 



468 32 196 1 118 388 pq(r) = 3 +-- 9 n -2 9- . a .  
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0 I STORT I OM 

Electrical engineera aeem to be divided into two groups. One grcup is concerned 
with analog signals that have conthuaus  properties, and thlr group of eagineera  speaks 
in terms of linearity, distortion, and harmonics. The other group is concerned with 
probability theory and speaks in terms of samples,  distributions, and statistics.  It i s  
difficult to make a correlation between  the two groups. Because, in this report, sam- 
ple stattstlc6 are used to investigate linearlty, a bridge between  the two groups must 
be used. An attempt was made to correlate  harmonic-distortion  levels of sine waves 
with shifts of the statistics of Gaussian  random vartablee. 

Distortion is defined as the percentage of content, in a a i m ,  of the harmonics 
of a sine wave (ref. 6). If the Vt (where 1 - 1, 1, . . , n) are the  magnitudes of har- 
mcutcally related sine waves in a signal, wltb VI b e i n g  the magnitude of the  fundamen- 
tal rignal, the percentage of total hurmonlc dirrtortton D ir 



obtained. Tbe degree of shift would  depend on the amount of distortion. Computer 
programs written to generate data for correlation ob distortion  levels with moment- 
ratlo  shifts are described in appendixes B and C. 

CORRELATION OF SIGNAL  MAGNITUDES 

Processes "of approximately the  same size" were referred to previously; how- 
ever,  this terminology is  not very precise. For the  purposes ob this  report, the 
root mean aware (rms)value of a process is used to indicate its "size. t 8  For a sine 
wave, the rms value is 0.707 times the  peak value. For nonsinusoidal processes, the 
rrns value  must be calculated for each case. The rms value for  a zero-mean Gaussian 
process is the square root of m2 and is called the standard deviation. Obviously, the 
form factors of sine waves and Gaussian processes (i. e., the ratios of the peak to the 
rms values) are different. However, the rms value of any given process  represents the 
8ame amount of power as  the same rms value of any other  process.  Furthermorb, thz 
rms value is linear in a linear  transfer; that is, multiplication of a sine wave by a con- 
stant has the same effect on the sine-wave rms value as multiplication of a Gaussian 
process by the same constant has on the standard deviation of the Gaussian process. 

DISTORTION COMPARED WITH TRANSFER FUNCTION 

A computer program that calculates the distortion of a sine wave for a gfven 
-fer function is described in appendix B. This program performs the following 
operations. 

1. Inputs data that specify the transfer function 

2. Fib the least-squares cume to &e transfer-function data points 

3. Applies a sine wave af a given rm8 d u e  to the transfer function and obtains 5 

. , ._ - !  -4 

the output 

4. Conshcts a Fourier series on the transferred signal to obtain the harmonice 

5. Calculates the distortion 
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. (a) Transfer fwctiou, +) Distortion. 
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TRANSFERRED GAUSSIAN PROCESSES 

A complter program ttmt applies  samples from a ~ a u s s ~  process to transfer 
hnctiorm and examines the mment-ratio shifts is presented in appendix C. This com- 
prter program performs the following operations. 

1. Inputs the transfer-function polynomial coefficients 

2. Generates the  random uumbere 

9. Adjusts the standard deviation of the random aumbera to some desired value 

18 



t '  .... 
6. Calculates the first four moments of the transferred  process 

6, Evaluates the  ratio (3m2 - mg)/3m2 2 2 

I 7, Repeats as many iterations as desired 
e .  

. ' j*,. ')! 8. Plots a histogram of the results of step 6 

; 5 ,::: 
> ,'. :. Histograms produced by the computer program and contrasted with the results of the 

,$:+j 

' b  

. . .< 

:$?j ...I" * untransferred Gaussian process are shown in figures rb(c), 5(c),  and  6(c). 

DISCUSSION OF RESULTS 

A typical  drooping transfer function, such as might be obtained from a lltiredrt 
electronics bas, i s  shown in figure 4(a). This  transfer function causes compression of 

2 the input-signal peak8 and should cause apositive shift in the ratio ( S 9 2  - m4)/3m2 . 
As s h o w  in  figure 4(c), such a shift does occur. For  relatively small numbers of sam- 
ples per set,  the  dispersion of points is so great that small amounts of distortion could 
not  be detected reliably. However, for  sample sets as large as 500 (fig. 4(c)), small 
amounts of distortion can be detected readily. In earlier  stages of this investigation, 
a Kolmogorov-Smirnov goodness-of-fit test was incorporated into the computer pro- 
gram that is described in appendix C. However, this test was eliminated when it be- 
came evident that only rarely would a set be rejected as being from a non-Gaussian 
distribution. The moment-ratio-shift test proved to be much more  sensitive, especially 
because, in  the goodness-of-fit test, the sample is assumed to be from a Gaussian proc- 
ess, and the computer must have an  actremeiy good reason before it will reject a sam- 
ple.  In failure detection, the opposite assumption is more  desirable, because the 
penalty for taking a good unit off-line is not  high. 

.vJ 

.q4 ,;:,* 7 '  4 amplifier with too low a power-supply  voltage.  The transfer function flattens  very 
2J 
- I  in a sine wave,  would cause no distortion. This difference in distortion is caused by 

d,t rigid peak  value, in theory, and always exceeds the clipping  value. For a signal that 
' 1  was usually Gaussian, a standard-deviation value that would not cause  excessive clip- 
;I ping  of the signal would have to be determined, -and that value would be the operating 

The transfer function shown in figure 5(a) is the type that might  be  obtained in an 

sharply and causes a moment-ratio shift in a Gaussian signal that has a rms value that, 

the difference between .the form factors of the two signals. \ The Gaussian signal has no 

.:T 

i 

' ?  

, A  

level. Any clipping beyond that value obviously  would show up quickly. 

.'r 
.'. i 

:2J transistors are improperly biased. The transfer function  chops  out the center of the 
distribution. Although  not as detectable as in the other  forms, small amounts of dis- 
tortion caused by this type of tranafer function are still readily detectable. 

,'+? The trawfer function shown in figure 6(a) ia the type  obtained when push-push 

i: :. 
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In summation, the moment-ratio-shift test appears a0 be an effective way of 
detecting incipient failures that are reflected in nonlinear transfer functions. "he use- 
fulness of this test would be a function ob the failure modes  and would have to be aa- 
sessed for each  given situation. Nonetheless, the idea of using on-line signal statistics 
in failure detection appears  to have great  promise and should be pursued. 

SUGGESTIONS FOR  FURTHER INVESTIGATION 

Although the results presented in the preceding sections are interesting, they 
point  toward the possibility of work of a much broader and more important scope. Most 
signals used in communications are not Gaussian  and are far from stationary. Voice, 
which is one of the most common types of communications signals, is neither Gaussian 
nor stationary; voice signals vary it" almost  every way possible. However, this does 
not mean that the use of on-line signal statistics as an aid  in the detection of incipient 
failures is unfeasible. Rather, this would appear to be a situation tailormade  for  the 
application of learning theciry,  which is a discipline that has received much attention in 
recent  years. 

Nonlinear operations are most likely to occur inside an  electronics box. Because 
the box is probably very small (particularly in a spacecraft), both the input  and  output 
signals would be readily available. Furthermore, all future  spacecraft will probably 
have  powerful general-purpose computers on board. It seems reasonable to suppose 
that, in such a situation, the statistics of the input signal to the box could be learned 
by the computer and compared with the statistics of the output signal of the box. A 
significant shift in statistics would indicate an incipient failure. 

Several aspects of learning theory (ref. 6) will probably be required in such an 
application. The  technique will most certainly require unsupervised learning (ref. 7), 
because only general  characteristics w i l l  be known in advance,  and the signals will not 
be stationary. Because of the nonstationary signal characteristics, a form of moving- 
window technique  with  optimum  stopping rules (ref. 8) will probably be required. Be- 
cause any given signal has a great variety of statistics, some class of sufficient 
statistics (ref. 8) must be chosen f m  manipulation of each signal type. 

The most promising method of study in the use of on-line statistics  to detect in- 
. cipient failures  appears to be the application of learning theory. Specifically, the fol- 
. lowing steps should  be  taken. 

1. Investigation of the statistical properties of various communications signals 

2. Determination of eutficient statistics, ideally those that are generally appli- 

3. Application of nonsupervised leaking techniques, probably of a moving- 

4. Determination 2 optimum  stopping mies for xnaking v v g o r x i - b @ '  decisions 

cable in communications signals 
""-" , " ' . . . .  

window type, IIA the detmninatioa of the sufficient statistics 
.-. - 

about  on-line  equipment 
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I '  
1: ..: CONCLUS IONS 

The information presented in this report ]le& to the dollowira conclusions. 

1. The nonlinear transfer of a Gaussian si@' can be detected by using on-line 
signal statistics. . 

2. The moment-ratio-shift test is an effective method for the detection of very 
small  distortion levels. 

3. Further investigation is Warranted, specifically on the application of learning 
theory to the problem of detecting incipient failures by using on-line signal statistics. 

Manned Spacecraft Center 
National Aeronautics and Space Administration 

Houston, Texas, July 7, 1971 
908-42-07-00-72 . .  
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APPENDIX B 
COMPWER PROGRAM FOR CALCULATION OF DISTORTION 
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A block <flagram of thLs computer proglW3l l8 S!M)Wn in figure B-2. The complter 
program performs the following ogerartioaa. 

1. A decision Is made on whether dab OP input polgaomial coefficients wU1 de- 
fine the t r a d e r  function, and the choice is read in. I 

2. The calling instmctions CALL ORTHLS and CALL COEFS call library MU- 
tinea that fit a K-order polynomial to the input data, if such data have been read in. 

3. The  polynomial coefficients are written. 

4. The ordfpates of the input data bo the M e r  function (if such have been read 
in) and the transferred  results are  written out. 

5. The Do 10 loop sets the values of the absclsarrs wbere  the Fourier analyeis 
vlu take place. 

6. Tbe Iw) 20 loap aets the loop that EIJloas iterative operanon, with the m a  

7. m e  DO SO loop (a) sets tbe peak value d tbe she wave at I. 414 t h e e  the 
input rms value and (b) transfers these values thrm the M e r  !unction (DO 40 
loop). 

value of a sine wave as the vartable. > <  ., 
I" 

8. The calling iastruction CALL DFS'RIE Caus a llbrarg routine that performs 
a Fourier aualysis OR the transferred sine wave. 

. -  
9. The remainder of the computer program calculate~ the awn ol the~ ~~pares 

of tbe nonfunWental term af the Fourier aeries a d  calculates the harmonic 
d l S t O r t i O a .  

" r .  . 

! 

25 



26 

I 

I 
1 

I 1  
1 

I 
II 

, I  

a 

a 

a 



.I 

. . . , ' .  

1 : 

I smp 

. .  ... . . 
.. 

A .  

I. 1 

i !i 



APPENDIX C 
COMPUTER PROGRAM FOR CALCULATION 

OF DISTORTED GAUSSIAN MOMENTS 

A complter program (fig. C-1) that generates Gaussidy ctistrikrted pseudoran- 
dom numbers, applies the numbers to a M e r  function, and examines the ratios of 
moments ai the rewllt is described ia this appeudix. The followlag is a list of the key 
data cards used in the operation of this computer program. 

e. M - The highest order moment used 
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5.. The DO 6 loop sets the outer loop for the mLPnber 0% mmber sets. 

6. The DO 3 loop generates the number sets. 

7. The DO 7 loop sets the loop bo adjust the standard deviation. 

8. The DO 8 loop performs the transfer of numbers. 

0. The DO 10 loop calculates the moments and ratios of moments. 

10, The subroutine HIS1 arranges and prints a histogram of the results. 
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